Tropical Roots as Approximations to Eigenvalues of Matrix Polynomials
نویسندگان
چکیده
The tropical roots of t×p(x) = max0≤j≤` ‖Aj‖x are points at which the maximum is attained at least twice. These roots, which can be computed in only O(`) operations, can be good approximations to the moduli of the eigenvalues of the matrix polynomial P (λ) = ∑` j=0 λ Aj , in particular when the norms of the matrices Aj vary widely. Our aim is to investigate this observation and its applications. We start by providing annuli defined in terms of the tropical roots of t×p(x) that contain the eigenvalues of P (λ). Our localization results yield conditions under which tropical roots offer order of magnitude approximations to the moduli of the eigenvalues of P (λ). Our tropical localization of eigenvalues are less tight than eigenvalue localization results derived from a generalized matrix version of Pellet’s theorem but they are easier to interpret. Tropical roots are already used to determine the starting points for matrix polynomial eigensolvers based on scalar polynomial root solvers such as the Ehrlich-Aberth method and our results further justify this choice. Our results provide the basis for analyzing the effect of Gaubert and Sharify’s tropical scalings for P (λ) on (a) the conditioning of linearizations of tropically scaled P (λ) and (b) the backward stability of eigensolvers based on linearizations of tropically scaled P (λ). We anticipate that the tropical roots of t×p(x), on which the tropical scalings are based, will help designing polynomial eigensolvers with better numerical properties than standard algorithms for polynomial eigenvalue problems such as that implemented in the MATLAB function polyeig.
منابع مشابه
Eigenvalues of Hermite and Laguerre ensembles: Large Beta Asymptotics
In this paper we examine the zero and first order eigenvalue fluctuations for the β-Hermite and β-Laguerre ensembles, using the matrix models we described in [5], in the limit as β → ∞. We find that the fluctuations are described by Gaussians of variance O(1/β), centered at the roots of a corresponding Hermite (Laguerre) polynomial. We also show that the approximation is very good, even for sma...
متن کاملOn Matrix Polynomials with Real Roots
It is proved that the roots of combinations of matrix polynomials with real roots can be recast as eigenvalues of combinations of real symmetric matrices, under certain hypotheses. The proof is based on recent solution of the Lax conjecture. Several applications and corollaries, in particular concerning hyperbolic matrix polynomials, are presented.
متن کاملUniform Approximation of Eigenvalues in Laguerre and Hermite Β-ensembles by Roots of Orthogonal Polynomials
We derive strong uniform approximations for the eigenvalues in general Laguerre and Hermite β-ensembles by showing that the maximal discrepancy between the suitably scaled eigenvalues and roots of orthogonal polynomials converges almost surely to zero when the dimension converges to infinity. We also provide estimates of the rate of convergence. In the special case of a normalized real Wishart ...
متن کاملUniform approximation of eigenvalues in Laguerre and Hermite beta-ensembles by roots of orthogonal polynomials
We derive strong uniform approximations for the eigenvalues in general Laguerre and Hermite β-ensembles by showing that the maximal discrepancy between the suitably scaled eigenvalues and roots of orthogonal polynomials converges almost surely to zero when the dimension converges to infinity. We also provide estimates of the rate of convergence. In the special case of a normalized real Wishart ...
متن کاملOn the roots of the orthogonal polynomials and residual polynomials associated with a conjugate gradient method
In this paper we explore two sets of polynomials, the orthogonal polynomi-als and the residual polynomials, associated with a preconditioned conjugate gradient iteration for the solution of the linear system Ax = b. In the context of preconditioning by the matrix C, we show that the roots of the orthogonal polynomials, also known as generalized Ritz values, are the eigenvalues of an orthogonal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 36 شماره
صفحات -
تاریخ انتشار 2015